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Abstract

Generalized Category Discovery (GCD) aims to classify001
known and novel categories by learning discriminative fea-002
tures that capture fine-grained inter-class distinctions while003
remaining invariant to irrelevant variations. Existing meth-004
ods propose loss functions or use pseudo-labels for better005
clustering and alignment but overlook the impact of image006
tokenization in Vision Transformer (ViT). We hypothesize007
that a network should prioritize computational resources008
for discriminative regions to enhance feature representa-009
tion. We propose Subtoken Image Transformer (SiT), which010
enhances ViT tokenization by dividing tokens into subto-011
kens in discriminative regions, enabling finer granularity012
and improved feature representation. SiT is fine-tuned from013
a pretrained ViT, leveraging attention-based random region014
proposal during training, while a separate selection net-015
work identifies key regions during inference. Experiments016
on fine-grained GCD benchmarks (CUB, FGVC-Aircraft,017
and Stanford Cars) and coarse-grained GCD benchmarks018
(CIFAR-10 and ImageNet-100) demonstrate SiT’s superi-019
ority over state-of-the-art methods, revealing semantically020
critical patches essential for fine-grained discrimination.021
The code will be publicly released upon publication.022

1. Introduction023

Fine-grained classification addresses the critical challenge024
of distinguishing highly similar subcategories within a025
broader class, such as identifying bird species [49], vehi-026
cle models [25], or plant species [45]. However, traditional027
fine-grained classification heavily relies on labeled datasets,028
which is labor-intensive and time-consuming. Hence, Vaze029
et al. [46] propose the Generalize Category Discovery030
(GCD) task that learns from labeled fine-grained data and031
discovers novel categories in unlabeled data without prior032
knowledge of the number of subcategories of new groups.033
GCD requires learning discriminative representations that034
can effectively capture subtle inter-class differences in la-035
beled data while also generalizing to unlabeled data. Ex-036
isting methods try to address the task either by optimiz-037
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Figure 1. Motivation of SiT. Compared with multi-scale input that
crops and resizes the predicted bounding box regions, SiT relies on
the attention map for localizing fine-grained details on generic ob-
jects. Instead of region-level resizing, SiT performs an Attention-
based Token-level Subdivision (ATS) that reduces ineffective to-
kens, focusing more on fine-grained discriminative regions.

ing learning objective function [10, 33, 38, 47, 48, 52, 55] 038
or generating weak pseudo-labels through sample relation- 039
ships [14, 18, 35, 37, 38, 50, 54, 65, 65, 67]. 040

However, previous methods overlook the impact of im- 041
age tokenization in Vision Transformer (ViT), which plays 042
a crucial role in determining how visual information is pro- 043
cessed and represented. ViT’s default square patch to- 044
kenization allocates equal computational resources to all 045
image regions, including those irrelevant to distinguishing 046
fine-grained categories. Also, small regions lead to small 047
number of tokens while fine-grained classification often re- 048
quires focusing on minute details (such as subtle shape dif- 049
ferences in a bird’s leg), which may not be adequately cap- 050
tured by a uniform patch-based tokenization. This limita- 051
tion prevents models from effectively attending to and mod- 052
eling small yet critical regions that are essential for distin- 053
guishing visually similar subcategories. 054
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Motivated by this limitation, we propose a novel tok-055
enization strategy that dynamically allocates more tokens to056
the most important regions, ensuring finer granularity in ar-057
eas crucial for fine-grained discrimination. Instead of treat-058
ing all image regions equally, our approach adaptively sub-059
divides tokens in discriminative regions, allowing the model060
to capture subtle yet critical details while reducing redun-061
dancy in less informative areas. However, a key challenge062
lies in determining which regions are important for the task063
without explicit location supervision.064

To tackle this challenge, we propose Subtoken Image065
Transformer (SiT), a novel tokenization method that dy-066
namically refines token representation by allocating more067
tokens to discriminative regions, ensuring finer granularity068
where needed. An alternative approach would involve us-069
ing auxiliary bounding boxes, e.g., detecting the head of070
a bird, to crop and create multi-scale inputs, which is re-071
stricted to human knowledge. In contrast, SiT selectively072
increases resolution only in semantically important tokens,073
enhancing feature representation while maintaining flexibil-074
ity in capturing complex/irregular regions. A comparison075
with existing methods is shown in Fig. 1.076

Specifically, SiT first fine-tunes a pretrained ViT, and077
then leverages Attention-based Token Subdivision (ATS)078
to refine tokenization dynamically. During training, SiT079
utilizes attention maps to identify and randomly propose080
highly probable discriminative regions for token subdivi-081
sion, allowing the model to learn fine-grained representa-082
tions while maintaining generalization across varying sub-083
divisions. This process enables ViT to adapt to subdivided084
tokens at inference time. During inference, instead of ran-085
dom subdivision, SiT employs an auxiliary selection net-086
work that deterministically identifies key regions for token087
division.088

In summary, we make four contributions:089

• We introduce SiT (Subtoken Image Transformer), a090
novel tokenization strategy that dynamically refines to-091
ken representation by allocating more tokens to discrimi-092
native regions.093

• We propose Attention-based Token Subdivision, which094
uses attention maps from ViT to probabilistically sample095
token division locations during training. We also intro-096
duce Selection Network during testing that deterministi-097
cally identifies key regions for token division.098

• Extensive experiments on multiple fine-grained datasets099
demonstrate that SiT significantly enhances generalized100
category discovery, outperforming existing methods in101
distinguishing visually similar subcategories.102

2. Related Works103

Dynamic Token Scaling. Vision Transformers (ViTs), ex-104
emplified by CLIP [36], SigLIP [62], and the DINO fam-105

ily [6, 32], partition images into non-overlapping tokens 106
and leverage self-attention for feature extraction, contrast- 107
ing with CNN-based convolutional feature hierarchies. Re- 108
cent approaches address visual feature extraction through 109
distinct architectural strategies. LLaVA-NeXT [28] pro- 110
poses grid-based image decomposition for visual-language 111
tasks, processing subregions independently to enhance lo- 112
cal feature extraction. Swin Transformer [29] and Pyramid 113
vision transformer [51] employ multi-scale feature aggre- 114
gation through shifted windowing, though they introduce 115
computational redundancy while overlooking intra-image 116
heterogeneity. These methods demonstrate the importance 117
of spatial adaptation but lack dynamic resource allocation 118
mechanisms for region-specific processing demands. In this 119
work, we propose an Attention-based Token Subdivision 120
(ATS), dynamically subdividing tokens to amplify discrimi- 121
native features while maintaining pretrained ViT efficiency. 122

Fine-grained Localization. Fine-grained localization pin- 123
points discriminative features critical for inter-class differ- 124
entiation, primarily via keypoint detection and class activa- 125
tion maps (CAMs). Keypoint detection identifies semantic 126
landmarks to encode structural attributes, widely applied in 127
facial alignment [3, 27, 42, 63], human pose estimation [5, 128
15, 58], and object analysis (e.g., vehicles [40, 60, 61]). 129
These keypoints enhance tasks like face and gait recogni- 130
tion [24, 44] by providing complementary geometric pri- 131
ors. However, defining consistent keypoints for generic ob- 132
jects (e.g., industrial produ) remains challenging due to the 133
lack of anatomical priors, risking overemphasis on unim- 134
portant features. CAM-based methods [11, 22, 70] generate 135
class-specific saliency maps to identify crucial regions, but 136
are limited in propagating them into feature refinement. To 137
bridge this gap, we propose an attention-driven token selec- 138
tion method that identifies and amplifies discriminative to- 139
kens, optimizing fine-grained classification without relying 140
on predefined keypoints. 141

Generalized Category Discovery (GCD). GCD tackles 142
the task of jointly recognizing known classes and discov- 143
ering novel categories in unlabeled data, as formalized by 144
Vaze et al. [46] and Cao et al. [4]. Unlike semi-supervised 145
learning (SSL), which assumes unlabeled data belong to la- 146
beled classes [7, 31, 34, 39, 59], GCD extends novel cat- 147
egory discovery (NCD) [17, 19, 20, 66, 68, 69] by requir- 148
ing models to simultaneously leverage labeled data and par- 149
tition unlabeled novel subcategories. This creates a fine- 150
grained benchmark demanding precise separation of sub- 151
tle inter-class distinctions. Current approaches follow two 152
paradigms: (1) Prototype-based methods, which align fea- 153
tures using class anchors for both known and novel cate- 154
gories [1, 9, 10, 21, 23, 43, 53, 54, 56, 57, 64]; and (2) 155
Local similarity-based methods, which cluster samples or 156
generate pseudo-labels via pairwise relations [14, 18, 35, 157
37, 38, 47, 50, 54, 65, 65, 67]. However, these works priori- 158

2



ICCV
#

ICCV
#

ICCV 2025 Submission #. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

tize optimizing clustering metrics or loss functions, neglect-159
ing to analyze how intrinsic visual saliency (e.g., discrimi-160
native regions) impacts GCD performance. We revisit this161
problem by investigating: (1) Which object regions/tokens162
are pivotal for fine-grained differentiation? and (2) Can tar-163
geted token subdivision enhance feature discernibility?164

3. Methods165

3.1. Preliminary166

Image Tokenization. Given an image tensor x ∈167
RC×H×W , ViTs partition x into N = H

P × W
P non-168

overlapping patches, where P is the patch size. All patches169
are stacked into an image patch sequence I ∈ RN×C×P×P .170
Then I is flattened in its last three dimensions, and a learn-171
able projection matrix Wp ∈ RCP 2×D (i.e., patch embed-172
ding layer) transforms I into patch embeddings, combined173
with positional embeddings Epos ∈ RN×D to generate the174
input token sequence z0 ∈ RN×D for the transformer:175

z0 = WpI + Epos. (1)176

Attention Map. For input tokens zl ∈ RN×D at trans-177

former block l, the self-attention mechanism computes178
queries Q = zlWQ, keys K = zlWK , and values179
V = zlWV , where WQ,WK ,WV ∈ RD×dk are learn-180
able weights. The attention map Al ∈ RN×N derived as:181

Al = Softmax

(
QK⊤
√
dk

)
. (2)182

Conventionally, the attention map from the CLS token183
Al,CLS ∈ RN represents the global attention for the model.184
Each element Al,CLS(i, j) quantifies how many tokens i at-185
tend to token j, reflecting the model’s focus on discrimi-186
native regions (e.g., object parts). Higher values indicate187
stronger semantic relevance between tokens. ViTs exhibit188
hierarchical attention patterns across layers, with deeper189
blocks increasingly focusing on semantically fine-grained190
details, while shallow layers prioritize on low-level textures191
or global context [8, 13].192

For Multi-Head Self-Attention (MHSA), attention maps193
are gathered from all heads Âl,CLS ∈ RNhead×N where Nhead194
is the number of head. We illustrate how we select the most195
important attention map in Sec. 3.3.196

3.2. Attention-based Token Subdivision (ATS)197

Defining consistent keypoints for generic objects remains198
challenging due to the lack of anatomical priors, risking199
overemphasis on non-discriminative features. We introduce200
ATS to leverage knowledge from attention maps.201

Image Subdivision. As shown in Fig. 2, given an image202
patch sequence I and its attention map Ah

l,CLS from head h,203

Attention-based Token Subdivision

Interpolation

[CLS] Attn.

map

Pos. embed.

ViT

Top-K
Sub-

divide

Figure 2. Overview of ATS. We select the top-K patches based
on the attention map for subdivision. We select the neighboring
positional embedding for interpolation purpose.

we locate the top K patch set T ∈ RK×(C×P×P ) sorted 204
by the attention scores. For each patch, we generate f×f 205
number of subtokens. We first resize each patch by 206

T̂i=Upscale(Ti, factor=f), T̂i ∈ RC×(fP )×(fP ). (3) 207

Then we divide the interpolated patch into smaller patches 208
for all m,n ∈ {0, . . . , f − 1} in an f × f grid. Specifically, 209
one subtoken is defined as: 210

T̂
(m,n)
i = T̂i[:,mP : (m+1)P, nP : (n+1)P ], (4) 211

where all subtokens are denoted as: 212

T ′ =

K⋃
i=1

f−1⋃
m=0

f−1⋃
n=0

T̂
(m,n)
i ∈ RKf2×(C×P×P ). (5) 213

Put it simply, subtokens are created by upscaling and di- 214
viding each patch. T ′ concatenates with I to perform input 215
patch sequence to patch embedding layer: 216

Iin = Concat(I, T ′). (6) 217

Note that we do not drop T after obtaining T ′. We be- 218
lieve that T and T ′ can provide multi-scale information for 219
fine-grained classification. The effect of dropping T can be 220
found in Sec. 4.3. 221

Positional Embedding Interpolation. Positional embed- 222
dings (PE) are also subdivided in a similar fashion to image 223
patches. However, while image patches can be upscaled due 224
to their spatial resolution, a positional embedding at a par- 225
ticular location is a vector and cannot be directly upscaled 226
without remaining unchanged across the newly introduced 227
positions. 228

To address this, we expand each positional embedding 229
into a spatial structure by using its neighboring positional 230
embeddings. Given an original positional embedding Epos,i, 231

3



ICCV
#

ICCV
#

ICCV 2025 Submission #. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Stage 2: Selection training

ℒS𝐿

ℒSE
DINO

v2

…

…

[CLS] Attn.
maps

[CLS] Attn.
maps

ATS

ATS

DINOv
2 (ft)

DINOv
2 (ft)

DINOv
2 (ft)

DINOv
2 (ft)

Drop
topK

ℒCE

Selection loss

Random

select

ℒSE
DINO

v2

Stage 1: SiT Fine-tuning

Frozen

Mask token

Distance

Trainable

Selection 
network

Dist. label

Figure 3. Two-Stage Fine-tuning Framework. Stage 1 performs attention shift adaptation through the randomized selection of attention
maps for SiT fine-tuning. Stage 2 introduces a selection network that predicts attention map importance probabilities using selection loss
(right), computed as feature degradation distance with maximum-distance head indices as pseudo-labels for selection probability prediction.

we generate an upscaled embedding patch using spatial in-232
terpolation:233

Êpos,i = Upscale({Epos,j | j ∈ N (i)}, f), (7)234

where N (i) represents the set of eight neighboring adjacent235
positional embeddings. After interpolation, we divide Êpos,i236
into smaller positional embeddings in an f ×f grid, similar237
to image patch subdivision:238

Ê
(m,n)
pos,i = Êpos,i[:,mP : (m+1)P, nP : (n+1)P ], (8)239

for all m,n ∈ {0, . . . , f−1}. We then gather all subdivided240
positional embeddings into the final expanded set:241

ET ′

pos =

K⋃
i=1

f−1⋃
m=0

f−1⋃
n=0

Ê
(m,n)
pos,i ∈ RKf2×D. (9)242

Finally, the expanded positional embeddings are concate-243
nated with the original positional embeddings to maintain244
spatial consistency in the input sequence:245

znew
0 = WpI

in +Concat(Epos, E
T ′

pos). (10)246

This method ensures that newly introduced PE retains247
meaningful spatial structure.248

3.3. Two-stage Fine-Tuning249

A key challenge in subtoken division is to select the most in-250
formative regions during training. Random selection risks251

overlooking discriminative features, while a natural alterna- 252
tive—using attention maps—can be too restrictive. Select- 253
ing the top-K patches based on the average attention map 254
across all heads results in low diversity, as it repeatedly em- 255
phasizes a narrow subset of regions. To address this, we 256
propose a two-stage fine-tuning strategy that introduces ran- 257
domness in region selection during training and refines the 258
selection process to ensure consistency during inference. 259

• Stage 1: Randomized Top-K Selection. Instead of aver- 260
aging attention maps across all heads, we randomly sam- 261
ple from individual attention heads during training. This 262
encourages diverse region selection, exposing the model 263
to different semantic patterns and enhancing its ability to 264
learn robust discriminative features. 265

• Stage 2: Head Selection for Inference. A mismatch 266
arises because inference relies on the averaged attention 267
map, which may not align with the head-specific selec- 268
tions used during training. To resolve this, we introduce a 269
selection network that learns to identify the most informa- 270
tive attention head, ensuring consistency between training 271
and inference while preserving focus on critical regions. 272

To address the above challenges, we propose a two-stage 273
fine-tuning framwork: 1) SiT fine-tuning and 2) Selection 274
training, as shown in Fig. 3 (left). 275

SiT Fine-Tuning (Stage 1). The first-stage fine-tuning of 276
the SiT aligns the model’s attention mechanisms with the 277
target dataset distribution by simulating diverse attention 278
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behaviors. We stochastically sample attention maps Ah
l,CLS279

from layer l and head h to construct dynamic token se-280
quences, addressing three key challenges: (1) interpolated281
positional information for subtokens, preserving spatial re-282
lationships across scales; (2) integrated subtokens for atten-283
tion focus (i.e., I + T ′) to balance global and local atten-284
tion; and (3) enriching token diversity through head-wise285
stochastic sampling. We follow Rastegar et al. [38] to fine-286
tune the backbone using SelEx loss. This stage ensures287
robust subtokens feature extraction while preserving pre-288
trained knowledge for stage 2 refinement.289

Selection Training (stage2). Building upon Stage 1’s fine-290
tuned model, whose attention maps are better aligned with291
the target distribution, Stage 2 identifies semantically crit-292
ical regions for more precise token subdivision for further293
fine-tuning. We introduce a lightweight selection network,294
prioritizing attention maps that focus on discriminative re-295
gions. The selection network consists of an attention map296
branch and an image feature branch that takes Âl,CLS and297
image feature from the ViT as input and predicts the selec-298
tion probability Ypred ∈ RNhead . Since ground-truth labels299
for optimal region selection are unavailable, we propose a300
self-supervised selection loss as shown in the right side of301
Fig. 3. The idea of selection loss is that the proximity be-302
tween original features (i.e., I only) and degraded features303
(obtained by discarding tokens T and T ′) indicates the dis-304
criminative power of the discarded tokens. High proxim-305
ity suggests T and T ′ contribute minimally to fine-grained306
distinctions, while low proximity implies T and T ′ encode307
critical fine-grained cues, necessitating their retention.308

We take the fine-tuned DINOv2 from stage 1 and pro-309
ceed original features xori and degraded feature xh

drop ∈310

RNhead×D for attention map Âh
l,CLS of head h. Let Ytrue ∈311

RNhead represents the distance between xori and xdrop, the312
selection loss is defined as:313

LSL = − 1

Nhead

Nhead∑
h=1

argmax(Y
(h)

true ) log
(
Y

(h)
pred

)
, (11)314

where Y
(h)

true is the ground-truth one-hot encoded label.315

argmax(Y
(h)

true ) represents the index of xdrop with maximum316
distance towards xori. We continue to fine-tune DINOv2317
and train the selection layer. The total loss for stage 2 is:318

Lall = LSE + βLSL, (12)319

where β is a hyperparameter to control the weight of LSL.320

4. Experiments321

4.1. Experimental Setup322

Datasets. We evaluate our approach on fine-grained323
datasets: CUB-200 [49], FGVC-Aircraft [30], and324

Stanford-Cars [25]. In addition, we demonstrate the ver- 325
satility of our method on coarse-grained datasets: CI- 326
FAR10 [26], and ImageNet-100 [12]. This comprehensive 327
evaluation underscores the broader applicability of our ap- 328
proach beyond fine-grained classification tasks. Detailed 329
statistics of the datasets are provided in the Supplementary. 330

Implementation Details. We follow SelEx [38] to set 331
up known, novel categories for all datasets and use DI- 332
NOv2 [32] pretrained on ImageNet 22K. We use the batch 333
size of 128 for training and set the same loss hyperparame- 334
ters as SelEx. We fine-tune the last two blocks of DINOv2. 335
We use the bilinear function as the interpolation function. 336
We set K = 10% (i.e., top 10% of image tokens) for CUB, 337
and K = 1% for other datasets. f = 2 for scale factor and 338
learning rate lr = 0.1 for fine-tuning DINOv2 in stage 1 339
and stage 2, lr = 1e−4 for selection network. β is set to 1. 340

4.2. Comparison with State-of-the-Art 341

Fine-grained Image Classification. Our method is eval- 342
uated against baseline approaches on three fine-grained 343
datasets, as summarized in Tab. 1. The results demon- 344
strate the superior capability of our method in both all and 345
novel category classification, highlighting its effectiveness 346
for fine-grained recognition. The performance improve- 347
ments can be attributed to SiT’s ability to provide cru- 348
cial fine-grained semantic tokens across multiple scales, en- 349
abling the model to prioritize discriminative details without 350
the need to modify the loss function, architecture, or fine- 351
tuning strategy. Notably, the larger performance gain on 352
novel categories (3.4% versus 0.3% on known classes) un- 353
derscores our method’s reduced susceptibility to overfitting 354
and enhanced generalization to unseen objects. 355

Generic Image Classification. We also validate our 356
method on generic image classification tasks that focus on 357
coarse-grained objects in Tab. 2 using the same backbone 358
DINOv1 [6] as the baseline for a fair comparison. Our 359
method demonstrates the superior performance of CIFAR10 360
and ImageNet-100 compared with SelEx. Note that SiT is 361
designed for fine-grained classification, our method still has 362
performance gains in generic objects, which highlights the 363
robustness of SiT. The result also demonstrates that detail 364
regions are also important for generic image classification 365
even though the coarse-grained objects have a larger diver- 366
sity than fine-grained objects. 367

4.3. Ablation Studies 368

We comprehensively evaluate the effects of method com- 369
ponents and hyperparameters in this section. We present 370
additional ablations in the Supplementary. 371

Effects of Token Selection Methods. We benchmark our 372
token selection strategy against three baselines: (1) random 373
sampling K tokens, (2) averaged attention maps with top-K 374
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Table 1. Comparison with state-of-the-art for fine-grained image classification. Our method outperforms all other baseline methods
in all three categories (All, Known, Novel), especially significant improvement in the Novel, indicating the effectiveness of SiT. Bold and
underlined numbers indicate the best and second-best accuracies, respectively. [Keys: ∗: reported from [47]. †: reported from [65]].

CUB-200 FGVC-Aircraft Stanford-Cars Average

Method All Known Novel All Known Novel All Known Novel All Known Novel

D
IN

O
v1

ORCA† [4] 36.3 43.8 32.6 31.6 32.0 31.4 31.9 42.2 26.9 33.3 39.3 30.3
GCD [46] 51.3 56.6 48.7 45.0 41.1 46.9 39.0 57.6 29.9 45.1 51.8 41.8
GPC [67] 52.0 55.5 47.5 43.3 40.7 44.8 38.2 58.9 27.4 44.5 51.7 39.9
XCon [16] 52.1 54.3 51.0 47.7 44.4 49.4 40.5 58.8 31.7 46.8 52.5 44.0
SimGCD [54] 60.3 65.6 57.7 54.2 59.1 51.8 53.8 71.9 45.0 56.1 65.5 51.5
PIM [9] 62.7 75.7 56.2 - - - 43.1 66.9 31.6 - - -
PromptCAL [65] 62.9 64.4 62.1 52.2 52.2 52.3 50.2 70.1 40.6 55.1 62.2 51.7
DCCL [35] 63.5 60.8 64.9 - - - 43.1 55.7 36.2 - - -
AMEND [2] 64.9 75.6 59.6 52.8 61.8 48.3 56.4 73.3 48.2 58.0 70.2 52.0
µGCD [47] 65.7 68.0 64.6 53.8 55.4 53.0 56.5 68.1 50.9 58.7 63.8 56.2
SPTNet [50] 65.8 68.8 65.1 59.3 61.8 58.1 59.0 79.2 49.3 61.4 69.9 57.5
CMS [10] 68.2 76.5 64.0 56.0 63.4 52.3 56.9 76.1 47.6 60.4 72.0 54.6
GCA [33] 68.8 73.4 66.6 52.0 57.1 49.5 54.4 72.1 45.8 58.4 67.5 54.0
InfoSieve [37] 69.4 77.9 65.2 56.3 63.7 52.5 55.7 74.8 46.4 60.5 72.1 54.7
TIDA [52] - - - 54.6 61.3 52.1 54.7 72.3 46.2 - - -
SelEx [38] 73.6 75.3 72.8 57.1 64.7 53.3 58.5 75.6 50.3 63.0 71.9 58.8

D
IN

O
v2

GCD∗ [46] 71.9 71.2 72.3 55.4 47.9 59.2 65.7 67.8 64.7 64.3 62.3 65.4
SimGCD∗ [54] 71.5 78.1 68.3 63.9 69.9 60.9 71.5 81.9 66.6 69.0 76.6 65.3
µGCD∗ [47] 74.0 75.9 73.1 66.3 68.7 65.1 76.1 91.0 68.9 72.1 78.5 69.0
SelEx [38] 87.4 85.1 88.5 79.8 82.3 78.6 82.2 93.7 76.7 83.1 87.0 81.3

SiT (Ours) 91.8 86.3 94.6 80.8 81.3 80.5 83.8 94.9 78.5 85.5 87.3 84.7

selection, and (3) multi-scale concatenation via CapeX [41].375
The multi-scale baseline crops body and facial regions us-376
ing keypoint-derived bounding boxes resizes subregions to377
input resolution H × W , and concatenates all tokens with378
interpolated positional embeddings. Details of multi-scale379
implementation are provided in Supplementary. The perfor-380
mance comparison is shown in Tab. 3a.381

Compared with the multi-scale concatenation, our382
method achieves superior performance with much fewer383
tokens during evaluation, underscoring the importance of384
focusing on crucial regions—excessive tokens containing385
non-essential information may introduce noise and degrade386
model performance. Our method outperforms random sam-387
pling and averaged attention map with the same number of388
tokens, demonstrating that selecting the crucial region for389
subdivision is important. Fig. 4 reveals a consistent focus390
on discriminative regions (e.g., avian wingtips), providing391
interpretable insights into subcategory recognition.392

Effects of Hyperparameters. Tab. 3b reveals the relation-393
ship between scale factor f and top-K selection. We con-394
duct the ablation using the stage 1 fine-tuned model for395
comparison. The optimal performance occurs at f = 2396
with K = 10%, suggesting moderate scaling enables ef-397
fective utilization of more patches. Smaller f values bet-398

Table 2. Comparison with baseline method for coarse-grained
image classification. Bold numbers show the best accuracies. Our
method has a consistent performance for the three experimental
settings (All, Known, Novel), demonstrating that our method is
also suitable for coarse-grained classification.

CIFAR-10 ImageNet-100 Average

Method All Known Novel All Known Novel All Known Novel

SelEx [38] 95.9 98.1 94.8 83.1 93.6 77.8 89.5 95.6 86.3
SiT (Ours) 96.7 97.5 96.3 83.9 94.0 78.9 90.8 95.8 87.6

ter accommodate larger K by maintaining patch diversity, 399
while larger f requires a more conservative K selection to 400
avoid redundant overlapping patches. 401

Effects of Token Masking. We evaluate the effects of to- 402
ken masking strategies to understand the contribution of 403
different types of tokens. Tab. 4 demonstrates the comple- 404
mentary roles of selected tokens T and subtokens T ′. Our 405
method achieves peak performance with all tokens while 406
masking T ′ alone degrades performance by 2.1% in Novel 407
category. Compared with masking T , the performance dras- 408
tically drops when masking T ′, demonstrating the contri- 409
bution of T ′. Crucially, simultaneous masking of both T 410
and T ′ causes catastrophic performance collapse, revealing 411
their synergistic relationship: T provides stable base pat- 412
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Selected 
attn. map 

TopK
patches

Image

Figure 4. Visualization of attention map selection (K = 10%).
SiT demonstrates consistent semantic region selection across in-
stances through the token subdivision. Zoom in for a better effect.

SelEx

Ours

DINO
v2

Avg. Avg. Avg.

Figure 5. Attention map analysis of DINOv2, SelEx, and our SiT.
The rightmost column displays cross-head averaged attention map.
Our method exhibits concentrated activation patterns in compact
regions compared to baseline approaches, suggesting enhanced lo-
calization precision for discriminative features.

terns while T ′ captures fine-grained details. Masking T413
results in a 0.5% drop in Novel accuracy, indicating that414
subtokens significantly boost novel class recognition.415

Performance Comparison of Stage 1 and 2. Tab. 5a416
presents a comparison of the evaluation metrics between417
Stage 1 and Stage 2. We use the averaged attention map418
for Stage 1 evaluation. Notably, our Stage 1 results already419
outperform the baseline. After incorporating the selec-420
tion training in Stage 2, the performance further improved.421
These results indicate that the selection layer effectively pri-422
oritizes critical attention maps during Stage 2, leading to423
consistent performance gains among all datasets. Our at-424
tention map selection method plays a key role in enhancing425
the model’s ability to capture discriminative semantic fea-426
tures across varying instances and subcategories.427

Fine-grained Details Analysis. Our quantitative analy-428
sis reveals consistent selection patterns for fine-grained re-429
gions. As shown in Fig. 4, the method consistently identi-430
fies discriminative semantic regions across pose-varying in-431
stances (e.g., wing trailing edges in avian species), demon-432

Method # Tokens All Known Novel

SelEx [38] 256 87.4 85.1 88.5
Random sampling 356 82.4 85.2 81.0
Averaged attn. map 356 89.0 84.6 91.2
Multi-scale 768 87.8 86.1 88.8
SiT (Ours) 356 91.8 86.3 94.6

(a) Effects of token selection methods.

f K(%) # Tokens All Known Novel

2 1 264 90.3 84.0 93.5
2 5 304 90.5 85.6 93.1
2 10 356 91.8 86.3 94.6
3 1 274 90.4 84.2 93.6
3 5 364 90.3 84.0 93.5
3 10 481 90.7 85.9 93.3

(b) Effects of scale factor f and top K.

Table 3. Ablation studies on effects of the patch selection method,
hyperparameters on CUB. (a) Our selection network performs bet-
ter than other methods. (b) Higher f with larger K values increase
token redundancy and computational cost.

Method # Tokens All Known Novel

SiT (Ours) 356 91.8 86.3 94.6

Mask T 331 90.9 84.5 94.1
Mask T ′ 256 89.7 84.6 92.4
Mask T + T ′ 231 68.6 65.1 70.3

Table 4. Effects of masking different tokens on CUB. The huge
difference in performance indicates the importance of T ′ and T .

strating effective localization of class-critical visual pat- 433
terns. The subdivision process preserves these key regions 434
while maintaining natural context transitions. Such behav- 435
ior is crucial for tasks that rely on precise recognition of 436
subtle visual cues, thereby enhancing overall fine-grained 437
classification performance. 438

Fig. 5 compares attention maps of SelEx [38], pretrained 439
DINOv2 [32], and our method. While both SelEx and our 440
approach focus on fine-grained regions compared to DI- 441
NOv2, our method localizes smaller, more precise areas, 442
highlighting its superior ability to isolate discriminative de- 443
tails. This refined localization directly correlates with per- 444
formance improvements, as concentrating on critical re- 445
gions reduces irrelevant signal interference. Furthermore, 446
the averaged attention maps of baseline methods exhibit di- 447
luted focus on key regions due to the aggregation of multi- 448
head attention scores, as the differences in averaged atten- 449
tion maps are nuanced. This observation elucidates why at- 450
tention map averaging underperforms relative to our method 451
in Tab. 3a: our method preserves fine-grained focus through 452
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Figure 6. Distribution of head selection on fine-grained evaluation set. The pattern of head selection distribution implies the important
factor of different heads for the target datasets. We select one example from each dataset to visualize the attention pattern of each head in
the last layer of DINOv2.

Method All Known Novel

SelEx [38] 87.4 85.1 88.5

Stage 1 91.4 86.2 93.9
Stage 2 91.8 (+0.4%) 86.3 (+0.1%) 94.6 (+0.7%)

(a) Stage 1 and 2 Comparison on CUB.

Method All Known Novel

SelEx [38] 79.8 82.3 78.6

Stage 1 80.0 81.0 79.3
Stage 2 80.8 (+0.8%) 81.3 (+0.3%) 80.5 (+0.8%)

(b) Stage 1 and 2 Comparison on Aircraft.

Method All Known Novel

SelEx [38] 82.2 93.7 76.7

Stage 1 83.0 93.6 78.0
Stage 2 83.8 (+0.8%) 94.9 (+1.1%) 78.5 (+0.5%)

(c) Stage 1 and 2 Comparison on Scars.

Table 5. Two-stage fine-tuning performance comparison across
fine-grained datasets. The results indicate the effectiveness of the
proposed two-stage training.

attention map selection, enhancing feature discriminability.453
More attention map visualizations and comparisons are pro-454
vided in the Supplementary.455

Fig. 6 analyzes attention head selection across fine-456
grained datasets, highlighting domain-specific critical re-457
gions. For bird species recognition, high-frequency atten-458

tion heads focus on wingtip areas, whereas aircraft priori- 459
tize turbine components, and vehicles emphasize headlight 460
structures. We notice that a subset of attention heads re- 461
mains entirely unselected across all categories, indicating 462
potential redundancy or providing ineffective information. 463
This underscores the potential feasibility of optimizing ViTs 464
through head pruning for future works. 465

5. Conclusion 466

This work presents SiT, a novel Subtoken Vision Trans- 467
former adaptation that enhances fine-grained category dis- 468
covery through dynamic computational allocation. By 469
developing attention-based token subdivision and selec- 470
tion mechanisms, our method enables localized resolu- 471
tion enhancement in discriminative regions while maintain- 472
ing global contextual understanding. Extensive validation 473
on fine-grained and coarse-grain benchmarks demonstrates 474
SiT’s superior performance over existing approaches. The 475
learned attention patterns reveal semantically meaningful 476
regions aligned with domain expertise, providing inter- 477
pretable evidence for model decisions. The proposed two- 478
stage fine-tuning strategy effectively enhances the model’s 479
capability of fine-grained representation and focuses on cru- 480
cial region, bridges pretrained representations and down- 481
stream tasks without architectural modifications. Future 482
extensions could explore SiT’s applicability in multimodal 483
learning scenarios and its integration with emerging effi- 484
cient transformer variants. 485
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